Uncertainty Quantification Based Multi- Objective Optimization for Crashworthiness Design
نویسنده
چکیده
This paper presents a methodology for uncertainty quantification based multi-objective optimization of automotive body components under impact scenario. Conflicting design requirements arise as one tries, for example, to minimize structural mass while maximizing energy absorption of an automotive rail section under structural and occupant safety related performance measure constraints. Uncertainty quantification is performed in broadly using two methods: reliability based approach and robustness based approach. A design is called reliable if it meets all performance constraints in presence of uncertainty and robust if it is insensitive to such uncertainty. Mainly aleatory or stochastic uncertainty is addressed in this paper. Deterministic, reliability-based and robustness based multi-objective optimization solutions are compared. A genetic algorithm based multi-objective optimization software GDOT, developed in-house, is used to come-up with an optimal pareto-front in all cases. The technique employed here treats multiple objective functions separately without combining them in any form. A decision-making criterion is subsequently invoked to select the “best” subset of solutions from the obtained non-dominated Pareto optimal solutions. The pareto optimal set obtained in case are compared and contrasted and observations made comparing reliability based approach vis-à-vis robustness based approach.
منابع مشابه
Multi-objective Crashworthiness Optimization of the Aluminum Foam-filled Tubes
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimization of the automotive energy absorbing components. In this paper, axial impact crushing behavior of the aluminum foam-filled thin-walled tubes are studied by the finite element method using commercial software ABAQUS. Comparison of the...
متن کاملMulti-objective Optimization of Crashworthiness of Cylindrical Tubes as Energy Absorbers
In this article, the multi-objective optimization of cylindrical aluminum tubes under axial impact load is presented.The absorbed energy and the specific absorbed energy (SEA) are considered as objective functions while the maximum crush load should not exceed allowable limit. The geometric dimensions of tubes including diameter, length and thickness are chosen as design variables. The Non-domi...
متن کاملOptimization foam filled thin-walled structures for the crashworthiness capability: Review
In automotive industry, foam-filled structures have aroused increasing interest because of lightweight and capacity of energy absorption. Two types of foam filled thin walled structures such as the uniform foam filled (UF) and the functionally graded foam (FGF). To improve crashworthiness performance, FGF are used to fill structures, unlike existing uniform foam materials. In addition, by seeki...
متن کاملAn Optimization Model for Multi-objective Closed-loop Supply Chain Network under uncertainty: A Hybrid Fuzzy-stochastic Programming Method
In this research, we address the application of uncertaintyprogramming to design a multi-site, multi-product, multi-period,closed-loop supply chain (CLSC) network. In order to make theresults of this article more realistic, a CLSC for a case study inthe iron and steel industry has been explored. The presentedsupply chain covers three objective functions: maximization ofprofit, minimization of n...
متن کاملReliability-based design optimization for crashworthiness of vehicle side impact
With the advent of powerful computers, vehicle safety issues have recently been addressed using computational methods of vehicle crashworthiness, resulting in reductions in cost and time for new vehicle development. Vehicle design demands multidisciplinary optimization coupled with a computational crashworthiness analysis. However, simulation-based optimization generates deterministic optimum d...
متن کامل